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Abstract. The study of rain time series records is mainly carried out using rainfall rate or rain accumulation parameters
estimated on a fixed duration (typically 1 min, 1 hour or 1 day). In this paper we used the concept of rain event. Among the
numerous existing variables dedicated to the characterisation of rain events, the first part of this paper aims to obtain a
15 parsimonious characterisation of these events using a minimal set of variables. In this context an algorithm based on Genetic
Algorithm (GA) and Self Organising Maps (SOM) is proposed. The use of SOM is justify by the fact that it allows to maps a
high dimensional data space to a two dimensional space while preserving as much as possible the initial space topology in an
unsupervised way. The obtained 2D maps allow to provide the dependencies between variables and consequently to remove
redundant variables leading to a minimal subset of variables. The ability of the obtained 2D map to deduce all events
20 characteristics from only five features (the event duration, the rain rate peak, the rain event depth, the event rain rate standard
deviation and the absolute rain rate variation of order 0.5) is verified. From this minimal subset of variables hierarchical cluster
analysis were conducted. We show that a clustering in two classes allows finding the classic convective and stratiform classes
while a classification in five classes allows refining this convective / stratiform classification. Finally, the last objective of this
paper is to study the possible relationship between these five classes and their associated rain event microphysics. Some

25 relationship between these classes and microphysics parameters are highlighted.

1. Introduction

One method to obtain information regarding the characteristics of precipitations at a particular location and for a specific
30 application is the use of the concept called “precipitation event” or “rain event”. Such a concept is a convenient way to

summarize precipitation time series in a small number of characteristics so that they make sense for particular applications.

The concept of a precipitation event is not new and has been used for many years (Eagleson, 1970; Brown et al., 1984). A
wide variety of definition depending on the context of the study has been investigated in the literature (Larsen and Teves,
2015). Moreover, when a rain rate time series (generally based on a pluviometer record) has been resolved into individual
35 rainfall events, a wide variety of characteristics of these events such as average rainfall rate, rain event duration and event
rainfall distribution (known as hydrological information) can be calculated for each event. We identified seventeen features in
the literature to characterize a rain event, this make the comparison between different studies quite difficult. The first goal of
this study is to select the most relevant features to characterize the events through a data-driven approach without taking into

account the application context and thus to characterize a rain event in the most parsimonious and efficient possible way.
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The second objective is to assess, without any a priori, that rain events are still properly clustered from these most relevant
observed features. Indeed, the specialists of atmospheric processes distinguish stratiform events from convective events,
arguing that physical processes involved in their evolution are different. The goal here is to check that a small sample of
variables, derived from point measurements to describe rain events, can realize this distinction and eventually refining it. The

5 hydrological (also called macro physical hereafter) information aims at characterizing rain events from rain gauges
measurements. Per se the hydrological information is defined to characterize global event features and is not defined to provide

any information about the raindrop microphysics of the event. Nevertheless in many applications such as remote sensing the
knowledge of the microphysics is essential. Usually the microphysics is characterised by the raindrop size distribution, noted

N(D), which is defined by the number of raindrops per unit of volume and per unit of raindrop diameter (D). Actually,

10 information on rain microphysics is often displayed through proxies of N(D) as it will be explained further. At the present
time, the rain microphysics features are not accessible by rain gauges which only provide macrophysical information. Only,

much more expensive devices called disdrometers provide both hydrological and microphysical information. Around the
world, there are few disdrometers where there are tens of thousands of rain gauges. As it will be shown further some of the
microphysical information embedded in the hydrological information can be retrieved. In consequence, observations given by

15 rain gauges could be very useful for microphysics studies by providing indirectly through a statistical approach the missing
microphysics information. In the following the terms "macro physical” or hydrological information will be associated to
characteristics related to rain rates or rain accumulation while the term "microphysical”" will be associated to characteristics of

the raindrop size distribution.

In this work, we use a data-driven approach to study the relations between different rain properties. Disdrometers provide drop
20 size distribution and consequently they allow estimating one-minute rain rates which are the measurements used to get
hydrological information. This information is coherent with what could be provided by standard pluviometers. Having both
microphysical and hydrological information we are also able to analyse the microphysical properties of the rain-event clusters
provided by our algorithm. This allows considering the possibility of retrieving (unobservable) microphysical information

from rain gauge measurements.

25 From a single rain-rate times series observed with a one minute time resolution, we wish to answer to the following questions
: Among the great number of hydrological information variables found in the literature which are the most significant? Does
the resulting description of rain events allow discriminating between different types of rain events? What (unobserved)

microphysical properties of an event or a type of rain event can be inferred from its macro physical description?

The paper is structured as follows. Section 2 presents the data employed in the study and lists some hydrological information
30 commonly found in the literature. As shown in this section, these 17 identified macro physical variables need to be properly
normalised. Section 3 presents the methodology based on a genetic algorithm (GA) relying on the use of a self-organizing map
(SOM also called topological map). This unsupervised approach is used to select some of the 17 identified variables. We are
hence able to obtain a parsimonious characterisation of the rainfall events. An exploratory statistical analysis of rainfall events
is provided. In section 4 the rainfall events are grouped in cluster. At first the rainfall events are divided in two classes and we
35 show that this partition of the data set corresponds to the standard convective / stratiform classification. In a second time a
classification in five subclasses is proposed. This classification is a refinement of the previous one. In section 5 we add some
microphysical features of the rainfall events allowing studying the microphysical properties of the five event classes previously

defined. Finally we conclude the study in section 6.

2. Used data sets - Retained approach and Data processing
40 This work leans on a raindrop collection obtained with a disdrometer and more specifically a Dual-Beam Spectropluviometer

(DBS) described in Delahaye et al. (2006). This instrument allows the recording of incoming drops through their arrival time
2
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as well as their diameter and fall velocity. The capture area of this sensor is 100 cm? so the obtained observations can be
considered as punctual. In this study the integration time T, was set to one minute. The raindrop collection is used to estimate
the corresponding one-minute rain rates time series RR(t). In order to eliminate false raindrop detections that could be
generated by dust or insects a threshold To=0.1 mm.h™! is applied. Hence rain rates lower than Ty are set to zero. This
5 conventional threshold is also chosen to maintain the coherence with previous studies (Verrier et al., 2013; Llasat et al., 2001).
For this study we worked with two data sets recorded over a period ranging from July 2008 to July 2014 at the “Site

Instrumental de Recherche par Télédétection Atmosphérique” (SIRTA!) in Palaiseau, France.

2.1 Rain event definition

Everyone can observe that rain starts to stop some time later. This is how a rain event is defined in everyday life. However,
10 given the discreet nature of rain (made out of drops) it is not an easy definition. Indeed a rain event will depend on the sensor

characteristics (specific surface caption, detection threshold, instrumental noise). This definition may also depend on the

purpose of the study and thus on the scientific community behind it. Hence a wide variety of criteria exists to divide

precipitation records into rain events. To keep the results as unambiguous as possible the definition of a “rain event” has to be

clearly stated.

15 In this study the pattern given by the one-minute rain rate time series RR/(t) can be simplified by grouping non-null rain rates
into a set of separate “primitive events” (Brown et al., 1985). On the basis of an assigned Minimum Inter-event Time (MIT)
(Coutinho et al., 2014), each rain rate corresponding to a particular minute is assigned to a given rainfall event, either the one
in progress or a subsequent supposed independent new rainfall event. In fact, the MIT is defined as the duration of a dry period
D, beyond which the occurrence of non-null rainfall marks the beginning of a new event. For dry periods lower than the MIT

20 rain rates from either side of this period are considered to belong to the same “composite event”. Authors have proposed
different values of MIT that ensure event independence. Llasat (2001) noted that: “The definition of an episode is quite
subjective. In this case it was felt possible to distinguish between two different episodes when the time which elapses between

o»

them without rainfall exceeds 1h, which ensures that, the two episodes come from different ‘clouds‘”. Bocquillon and Moussa
(2014) wrote: “the constant rain observations on less than thirty minutes represent only 5% of all the rainy periods. The

25 representative threshold of the discretization of the data is 30 minutes to an hour.”

Dunkerley (2008 a, b) carried out an analysis of the Inter-Event Time (IET) in order to check the influence of this variable on
the definition of rainfall events and its influence on the average rainfall rate. As highlighted in this study, when determining a
value for the MIT the compromise between independence of rain events and intra-event variability of rain rates is crucial. The
selection of the MIT directly impacts the estimated macro physical characteristics. Other researchers proposed to use MIT

30 values of 20 minutes, lhour or 1day (see Dunkerley, 2008a for a detailed list). We decided in this study to set it to 30 minutes.
This value is in accordance with what was used by Coutinho et al. (2014), Haile et al. (2011), Dunkerley (2008a, b), Balme et
al. (2006) or Cosgrove and Garstang (1995).

Finally with our data set this choice leads to 545 rain events divided in two subsets, i.e. one for the learning and the other for
the test (Tab. 1). The training data set is composed of observations collected during two years in 2013 and 2014 with an
35 availability of 96.4% while the test set collected during the period 2008 — 2012 contains periods with missing data due to a

dysfunction of the device.

Table 1: Observation periods and availability of DBS observations and number of rain events for learning and test data sets

! http://sirta-dev.ipsl.jussieu.fr/joomla/index.php/85-article-sans-categorie/7 1 -sirta-home-page

3
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2.2 Macro physical description of rain events

Rain events contain numerous information that it is desirable to condense to a restricted set of well-chosen features. There is

not a suitable or conventional list of the macro physical features needed to describe and summarize all the information relative

to an event. Therefore we decided to consider a significant number of features representative of what is found in the literature
5 dealing with macro physical information. The 17 characteristics we identified (Llasat, 2001; Moussa, 1991) are presented in

Tab. 2. Some of them are parameter dependent like P. which uses 3 values of parameter c. These 3 values lead to 3 Pc indices

namely Pc;, Pc2, Pcs. Finally a total of 23 indicators were defined and numbered from 1 to 23 (column 1 in Tab. 2).

Table 2: The 23 variables identified in the literature to characterize a rain event

10

Among the 23 indicators (also called variables hereafter) corresponding to the previous defined features some are very classical
like the event duration (D.), the quartile (Q;), the mean event rain rate (R,,) or the standard rain rate deviation (o5). Some others
are less traditional like the B parameter (indicator of the convective nature of the rain see Llasat (2001)), the absolute rain rate
15 variation of order ¢ (P.) or the absolute rain rate variation (Ps.). Some variables usually used to describe times series like
fractal dimension, trend, seasonality, autocorrelation, multifractal parameters require long series of data and are not well suited
for an event by event analysis. Even if, for events composed of very few samples (very low value of variable D.) computation
of some indicators (or, Qi) is questionable, in the following of the study the 23 variables were calculated for each of the 545

rain events.

20 2.3 PCA analysis and normalization step
An important point to considerer is that most of these 23 variables do not allow the probabilistic assumptions associated with
most exploratory statistical methods. They are often of great variability with highly skewed distributions and therefore are not
normally distributed. Consequently the direct use of standard statistical methods on these data is made more complex and may
lead to misleading interpretations (Daumas, 1982). An additional step is thus necessary in order to transform the original

25 distributions to quasi normal distributed distributions. The type of normalizing transformation chosen for each variables was
done empirically by testing 7 different possible transformations (Tab. 3). For each variable, the retained transformation is the
one which gives the distribution the closest to a normal distribution, that is to say a kurtosis close to 3 and the skewness close

to 0. For each indicator the selected transformation is given in Tab.2 last column.

30

Table 3: Transformations used to normalize the variables described in Table 2

After the normalisation step a Principal Component Analysis (PCA) was conducted on the learning data set. It follows that the
two principal axes contain 73% of the total information while the first 5 principal axes are necessary to represent 90% of the
35 total information. The IET), variable (#7) is very well correlated with axis 5 while others variables are not. This means that no
linear relationship exist between IET), and the other variables. The correlation circle on axis 1 & 2 (Fig. 1.a.) shows that among
the 23 variables 16 are well correlated with axis (close to unit circle) and are distributed more or less in 5 groups (Hereafter
PCA groups). A first PCA group (G)) can be identified by the variables which are grouped close to the first axis and are well
correlated with it. This is for instance the case for the variables og (#9), P¢,, (#17 - 18) and B (#21 to 23). A second PCA group
40 (G2) composed of variables Ry (#11) and Pc3 (#16) just above axis 1. The third PCA group (G3) is formed only by the variable
Pc; (#15). The fourth PCA group (Gy) is composed of the variables P.; (#14) and Ps,c (#20) and is well correlated with axis
2. The last PCA group (Gs) is formed by the variable D, (#1). The correlation circle on axis 1 & 3 (fig. 1.b.) shows that variables

4
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Q1 (#4), Q2 (#5) and My (#10) are quite well represented by these two axis. A similar remark can be made for variables Dy (#3)
and PBri (#21) on axis 1 & 4 (not shown in the paper).

Finally the PCA analysis clearly shows that within each PCA group many variables are highly correlated with each other, i.e.
linearly dependant of each other’s. This means that a number of variables can be removed without substantial loss of

5 information. This leads to the following question: Which variables can be removed in order to get the most parsimonious
subset of variables representative of the whole data set? PCA extracts summary variables which are linear combination of the
original ones but do not allow for the selection of variables. To answer to this question, the approach we propose here is a
method of global selection of variables which seek to identify the relevant variables in a dataset. It seems more interesting to

select variables with a physical sense rather than using dimension reduction methods (e.g., the principal component analysis

10 PCA which is more able for detecting linear relationships). The proposed method is derived from the genetic algorithms. The

following paragraph provides some basics about genetic algorithms and presents how these can help us to make our selection.

Figure 1: PCA on the training data set of the 23 variables described in Tab. 3. Left : Correlation circle on axis 1 & 2. Right :
Correlation circle on axis 1 & 3. All the variables are normalised according to Tab. 2 last column.

15

3. Variables selection with genetic algorithms

Genetic algorithms (GAs) (Holland, 1975) are stochastic optimization algorithms based on the mechanics of natural selection
and genetics described by Charles Darwin. The principle is simple. We start at generation 1 with an initial population of
20  potential solutions (chromosomes) arbitrarily chosen. In our case, each chromosome defines among the 23 variables a subset
of variables which are potential candidates to describe the events. Then we evaluate the performance of each chromosome by
the mean of a fitness function. The performance of a chromosome characterizes its ability to represent the topology of the
whole dataset with a minimal number of variables. Based on this performance we create a new generation of chromosomes of
potential solutions using classical evolutionary operators: selection, crossover and mutation. We repeat this cycle until the stop

25 criteria is asserted.

3.1 Methodology

The GAs for variables selection are based on the following five steps (Fig.2.):

Step 1- Initialization: (Coding and initial population) we used binary coding as follows:
30  Let’s define a chromosome x = (X, X5, ..., X»3) as a vector in {0,1}?% with:

x =1 The corresponding variable in Tab.?2 is selected

vi €{1,..,23} {xi =0 The corresponding variable in Tab.2 is non selected M

Then we generated, randomly, a population {x*, k=1, ...,60} of 60 chromosomes of dimension 23.

Step 2- Evaluation: For each of the x* chromosomes a Self-Organizing Maps M(x*) is associated. Self-Organizing Maps (SOM)
introduced by Teuvo Kohonen (Kohonen, 1982) are a popular clustering and visualization algorithm (see section 4). The 234
35 rain events vectors belonging to the training data set are then used to train each of the 60 Maps. The maps M(x*) will only use
for training the variables those the components in x* are equal to 1. Once training each of the 60 Maps M(x*) provides a

topologic error te(x) estimated on the whole (23) variables. A score f{x*) (fitness) is assigned to each chromosome x* as a
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function of the quality of the SOM through its topology error and the number nb of variables used to train the corresponding

map. The analytical form of the fitness function is:

1

ky —
f&5) = nb(xk) te(xk) @
With

5 nb(x*) : number of selected variables in chromosome x*
te(x¥) topological error of the SOM M (x*)

This fitness function tends to provide low values when the number of selected variables or the topological error increases. The

aim is to maximise the fitness function.

Best

Step 3- Select the best chromosome x®*' among the 60 chromosomes according to its fitness computed on the test dataset. If

Best

x°*' remains the same during 50 generations then stop the procedure and select the relevant variables, i.e. the ones for which

10 the corresponding components are equal to 1 in xB, Else go to step 4.

Step 4- Selection: Create a new population of 60 chromosomes from the initial population by random sampling with
replacement of chromosomes based on their probabilities calculated according to the formula:

Pr(x¥) = L& 3)

PENIED)
Step 5- Reproduction: Mutation and Crossover possibilities in the new population.

15 Mutation: It consists of modifying (or not) some components of the chromosomes. The probability of mutation is in general
very low and is commonly set to p = 1077 In our case the number of necessaries generations to reach our objective is lower

than a few hundred. Consequently in our case, the probability of a mutation is highly unlikely.

Crossover: First, we randomly draw 62—0 = 30 couples of chromosomes from our population. Then, for each couple (x* x)

(called parents) one crossover point, noted /., is randomly drawn in the range [1, 23] using a discrete uniform law. Two new

20  chromosomes (x*, x') are created in the following way:

k' — (k2K k 4l l L
X = (X0, X5, s Xpes X 15 Xih2s s X23)
|4 Lol I,k k k “

xt = (el X o) XL Xogr ) Xt s X53)
So from two parents we generate two children allowing having a new generation with the same number of chromosomes.

Finally go to step 2.

25 Figure 2: Diagram for the selection of variables based on a Genetic Algorithm associated with Kohonen Maps

3. 2 Rain event parsimonious description

The genetic algorithm is applied to our datasets in order to obtain an optimal subset of variables forming a subspace who can

be (in some sense) nearly informative of the global space with the particularity of non-redundancy of information. At the 187"
30 generation we get a subspace formed by 5 variables that describe quite well the original space vectors, namely : Event duration

D, (#1), Standard deviation oy (#9), rain rate peak in event R,,,, (#11), Rain event depth R, (#13), Absolute rain rate variation

P, (#14).
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The 3 variables (D,, Ry,qx, Rq) selected with this data driven approach are commonly used in study of hydrological processes
(Haile and al., 2011). We can note moreover that the commonly used variable R,,, which is simply calculated by dividing Rain
event depth (R;) by the duration (D,), was not selected by the selection algorithm. This result is expected because it is
correlated with the latter variables and since the algorithm provides a parsimonious description. Concerning the Absolute rain
5 rate variation (P,,), the latter was proposed by Moussa and Bocquillon (1991), this variable tends to give information on the
structure of the events and more specifically to smooth events with a small number of sharp peaks. Indeed this variable
promotes low variations of RR, because Pc; is in some sense a structure function of order ¢, of the variable Ryu.x (see #14
column 4 in Tab. 2) with a low value of the exponent (c; = 0.5). Finally the standard deviation variable (oz) which is a second

order moment is the most common indicator to describe the variability of the precipitation rate within the rain event.

10 4.SOM learned with the five selected variables
The evaluation step is based on the ability of the selected variables to preserves as much as possible the topology of the initial

space. This ability is quantified through the topologic error of the Self-Organizing Maps (Kohonen, 1982, 2001).

A SOM is a topological map composed of neurons. In our case, a neuron is a vector of dimension 23 containing the 23 variables
defined previously. Each neuron has 6 neighboring neurons. SOM is an unsupervised neural network trained by a competitive
15 learning strategy that performs two tasks: vector quantization and vector projection. Different from K-means, SOM uses the
neighborhood interaction set to learn the topological structure hidden in the data. In addition to the best matching referent
vector, its neighbors on the map are updated, resulting in regions where neurons in the same neighborhood are very similar. It
can be considered as an algorithm that maps a high dimensional data space to a two dimensional space called a map. A map
can be used at the same time both to reduce the amount data by clustering and for projecting the data in a non-linearly way to

20  aregular grid (the map grid).

In this study a SOM with 8x8 = 64 neurons is considered. After training by the GA algorithm described in section 3 the map
M (xB¢t) can be used to affect to any event the best matching referent vector (neuron) according to the 5 variables previously

selected. The obtained SOM M (xB¢5%) can be considered as an optimal representation of the initial data set.

Figure 3 shows the distances matrix. For each neuron the color indicates the mean distance between the neuron and its
25 neighbors. The value at the center of each neuron represents the number of rain events of the training data set captured by the
corresponding neuron. All neurons capture rain events and a bit more than half of them capture between 3 and 5 rain events

which is close to the value that would be obtained (234 / 64 = 4) if the rain events were uniformly distributed on the map.

Figure 3: Distance matrix of M(xBs") map: The color of each neuron represents its distance with neighbouring neurons. Values

30 inside each neuron provide the number of rain events of the training data set captured by the corresponding neuron. The black
line separates the neurons in 2 classes using Hierarchical Ascendant Classification (see section 4.1). The arrows represent the
gradients of variables Rmax, og and De

4.1 Projection of the selected and unlearned variables on the SOM
35 The five variables D,, 0, Ry, Rq and P, used for training are referred to as 'selected’ while the other 18 variables are
referred to as 'unlearned'. In order to study the relation between variables figure 4 shows the projections for each variables of
the M (x®¢t) map obtained with the GA selection algorithm presented previously. The variables are discussed individually by
considering their structuration but also by considering relationships between them. We note that the map is well structured for
the majority of the variables. This good structuration of most of the variables confirms the ability of the selected variables to
40 summarize all the characteristics of rain events. Only few characteristics are not well represented. Note that almost all variables

are structured according to the first or the second diagonal. Among them one can consider a first subset composed with
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variables more or less structured according to the first diagonal. This is the case for the unlearned variable D, as well as the
selected variables P.; and D,. A second subset composed of variables more or less structured according to the second diagonal
can be identified. This is the case for the unlearned variables Ry, R, Peyi which are very similar to the selected variable og.
The unlearned variables Q3, Pc3, Ps ¢ belong also to the second subset and present a structure close to that of the selected

5  variable Rpqy.

The map can be related to the Principal Component Analysis conducted previously (Fig.1). As it can be shown in Fig. 4 the
variables Pc3 (#16) and Ry.q (#11) which have similar structure belongs also to the same PCA group, namely the group G, (see
section 2.3, Fig. 1.a). It is interesting to note that the variables Psc (#20) and Ru.ax (#11) which have also similar structure do
not belong to the same PCA group (groups G4 and G: respectively) and are uncorrelated (They are orthogonal in Fig.1a). This
10 remark means that the topological map reveal a relationship that cannot be detected with the PCA. As Rain event depth (Ry)
depends both on the duration and intensity of the events, the corresponding map has a top-down structure. It appears clearly

two distinct situations:

- The events that bring the greatest amount of water (Fig. 4. brown neuron at the bottom right of R;) are among the

longest (see corresponding neuron of D) but do not have an extreme rain rate peak (see corresponding neuron of Ryuqx) and are
15 quite smooth (see corresponding neuron of P.; and oy, ).

- The events that bring a great amount of water (but less than previously) (Fig. 4. red neuron at the bottom left of Ry)

have short durations (See corresponding neuron of D.) but are violent (see corresponding neuron of R.) and are less smooth

(see corresponding neuron of P.; and oy ). This last case reflects situations of convective storm type.

The obtained map confirms the dependence structure of the two hydrological variables R; and D, studied in Gargouri and

20 Chebchoub (2010).

Variable IET, (Previous IET) : the map is not structured, reflecting the independence of the characteristics of a rain event with
respect to the drought period preceding the event. This corroborates several previous works (Lavergnat and Gole, 1998, 2006;
Akrour et al., 2015) relative to rain support simulation. These authors have noticed that successive rain and no rain periods
are found to be uncorrelated, thus a rain time series can be considered by an alternation of rain event and no rain independently
25 drawn periods. That is similar to say that inter-event time (IET) doesn’t characterize the rain events. Brown et al. (1983) also
investigated a possible dependence between IET, and the intra-event characteristics and they conclude that the assessment of

their data gave no indication that such dependency exists.

The B variable: the B variable (Llasat, 2001) is supposed to represent a measure of the convective nature of the rain, so it
makes sense that the three variables f11, fi2, 13 are structured similarly with the rain rate peak variable R,uq.. This relationship

30  clearly is visible on maps.

Several other relationships not detailed here are visible like the correlation between Normalized Absolute rain rate variation
(Pc,,;) and standard deviation of intensity (og). We can conclude that the combination of the five selected variables summarizes
information from rain events properties. The bad structuring for few variables is justified by the independence between these

variables and the rain event properties; this is the case for the variable Dry Percentage in event D, or the variable IETp.

35

Figure 4: Projection of the M(xB°st) map according to the 23 variables. The red framed variables are those that were selected by
the GA algorithm. The last two variables Dm and Ngare defined later in section 5
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4.2 Representation of rain events on SOM
In order to provide additional information to validate the map we have compared both for the training and the test dataset each
of the 23 variables with their corresponding value given by the SOM. For each of the 311 events of the test data set the best
matching unit of the SOM, i.e. the neuron that is the closest of the event, is determined relatively to the five selected variables.
5 As an example Fig.5 shows for each event, the actual value of the unlearned variable ;3 versus the corresponding value given
by the best matching unit of the event. A spreading can be seen in particular in the central part while the spreading is relatively
small for values located near the edges (and which are in largest number). The linear regression gives a quite good
determination coefficient (R-square) (0.96 and 0.89 respectively for training and test data set). Table 4 gives the R-square for
the 23 variables obtained on the training and test data set. As expected the coefficient of determination of the variable 1ET), is
10 very poor (0.31/0.26) since this variable is not related to the 5 selected variables and consequently cannot be well represented
by the SOM (Fig. 4). The selected variables have good determination coefficients both on training and test dataset; this
confirms the quality of learning and generalization ability of the SOM. The quality of the training step is confirmed by the fact
that the R-square of the selected variables obtained on the test set are close to those obtained on the training set. The R-squares
corresponding to the unlearned variables obtained on the training data set underline the ability of selected variables to provide
15 the information contained in the unlearned variables; on the test data set it denotes the ability of the SOM to deduce all events

characteristics from only the selected variables.

Figure 5: B3 variable versus its corresponding value given by the best matching unit: on training data set (circle) and on the test
data set (star). The solid line correspond the first diagonal

20

Table 4: Coefficient of determination obtained on the training & test data sets. Values with dark grey background correspond to
25 the 5 selected variables

4.3 Hierarchical clustering of rain events

We have seen that the distance matrix (Fig. 3) therefore confirms the successful deployment of the map. Based on the distance

between neurons, it appears that neurons can be grouped to obtain a limited number of classes each with its own characteristics.
30 To group the 64 neurons in a few classes, a hierarchical cluster analysis was conducted (Everitt, 1974). Only the five selected

variables were used for the classification and a Euclidian distance was selected for the hierarchical algorithm. Fig. 6 shows the

obtained dendrogram applied to the 64 neurons.

Figure 6 Dendrogram obtained from the Hierarchical Cluster Analysis of the 64 neurons of SOM

35
In relation with physical processes involved, experts use to divide the rain events into two classes: stratiform and convective
events. Although this classification is quite crude because stratiform and convective events can sometime exist inside the same
rain event such a classification is very used. Concerning times series, authors use very simple scheme to separate stratiform
and convective rain types. For simplicity reason, rain classification is sometimes defined using instantaneous rain rate and

40  standard deviation estimated over consecutive samples. As an example Bringi and al. (2003) defined stratiform rain samples
when standard deviation of rain rate over five consecutive 2-min samples is less than 1.5 mm.h! and convective rain samples
are defined for rain rate greater or equal to 5 mm.h! and standard deviation of rain rate over five consecutive 2-min samples
greater than 1.5 mm.h".

Firstly we cut the dendrogram in two classes. The first class is composed of 51 neurons and contains 79% of the observations
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while the second one is composed of 13 neurons and contains 21% of the observations. The solid black line in Fig. 3 gives the

frontier between these two classes. The first class which is composed by the larger number of neurons is characterized in the

majority of cases by relatively low rain rates. This can be seen by examining the structure of the map according to the mean

rain rate variable (R, ). Moreover the analysis of standard deviation (small values of o), absolute rain rates P. (high values of

5 P.;and low values of P.3) shows that this class is more or less characterised by quiet and homogeneous events. The analysis

of event duration (D, ) shows that this class contains both short and long duration but with a preponderance for the latter. These

characterizations correspond quite well to description of stratiform and stable precipitations, which are often due to a slow and
large-scale uprising of a mass of moist air that condenses evenly.

The second group is characterized by a smaller number of neurons. It corresponds to the higher values of the mean rain rates

10 (R,,) and rain rate peaks (R,,q). The variables o, P. have the opposite values compared to those of the previous group. Most

of the event durations (D,) of this group are short except the neurone #64 (right bottom on the maps). This group fits well with

the definition of convective events which result from the rapid rise of air masses loaded with moisture, for buoyancy. This

convection moist air can cause the development of cumulus with vertical extensions that can exceed 10 km altitude and leading

to heavy rain.

15 The analysis of the structure of variables S, 4, 8,2, B.3 in Fig. 4 comforts the previous interpretation of the two groups. These

three variables, which are representative of convective rains, have high values for neurons belonging to this group.

Figures 7.a and 7.b show the neurons in the R, $;3and P¢; subspace. We can note that these 3 variables were not used in the
learning step. In spite of that, the two classes are well separated even if an overlap can be seen in Fig 7.a due to the neurons
#64 (bottom right on the map). As it will be seen further although it belongs to convective class, it nevertheless has some

20 characteristics of the stratiform class.

Figure 7: Representation of the neurons in the subspaces Rm, B;3and Rm, Pc2. Stars represent neurons belonging to group one
(stratiform) and square to neurons of group 2 (convective)

25
We conclude that this unsupervised automatic clustering based on the five selected variables allow to implement properly the
well-known 2 classes (stratiform and convective) classification. Note that this classification unlike those found in the literature

was done with no a priori since it results from an unsupervised process.

4.4 Classification of events into several classes
30 From the stratiform and convective classification described above it is interesting to refine the two classes in subclasses. For
example, the synoptic precipitations caused by the mid-latitude depressions are an example of stratiform precipitations. They
manifest themselves in the body rainy disturbances associated with warm and cold fronts. The very low light rains (the drizzle)
caused by stratus or stratocumulus are also part of the range of stratiform precipitations. They occur either in anticyclonic
conditions or in the warm sector of a disturbance. The associate rain depths (R;) are minimal, and they usually have no
35 hydrological impact other than the superficial wetting. To identify subclasses we had to refine the classification into a number

of unknown subclasses n > 2.

An important step of hierarchical clustering is the selection of the optimal number of partitions (n,,,) of the data set (Grazioli
et al., 2015). Many indices can be employed to evaluate each partition from the point of view of data similarity only. Most of
these indices evaluate the scattering inside each cluster with respect to the distance between clusters and they assign relatively
40  better scores to partitions with compact and well-separated clusters. We have tested different indices but they do not provide

the same number of subclasses (between 2 and 32 with the indices we have tested). We can notice that they do not consider
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the physical sense of each class. Finally we choose n,,; = 5 because for higher values we get classes with the same physical

sense which means a useless classification. The new classification using fives subclasses is presented in Fig. 8.

Figure 8: Hierarchical Clustering of the map in five subclasses. Colours represent the subclass numbers:
5 Subclass 1 : Dark blue, Subclass 2 : blue, Subclass 3 : Green, Subclass 4 : Orange, Subclass 5 : Red

Finally, among the five subclasses, two are part of the stratiform class and the three others are part of the convective class. On
the training dataset, the first subclass represents 12% of the whole events and respectively 68%, 1.2%, 6.8% and 12% for the
10 subclasses 2 to 5. The characteristics of these five subclasses are summarized below and in Tab. 5. The five selected variables

are remarkably heterogeneous between classes meaning the accuracy of these variables for clustering:

Subclass 1 (drizzle and very light rain): the main feature of this class is the very low mean (R,,) and standard deviation oy of
event rain rates in addition to the features of the superclass. The mean event rain rates are in the range [0, 0.5] mm.h"! with a
15 mean value of 0.36 mm.h! and ayin the range [0, 3] mm.h"' with a mean value of 0.1 mm.h"!. This class give a small amount
of water although the event duration is high. This subclass of events is characteristic of drizzle. We can note also that low

value of B3 is a good indicator (< 0.01) for drizzle.

Subclass 2 (The “normal” events): a relatively broad class which contain 68 % of the whole events with mean event rain rate
(R, in the range [0.5 , 6] mm.h"' and a mean value of 1.48 mm.h"'. The standard deviation oy is in the range [1, 10] mm.h"!
20 with a mean value of 2. This subclass is characterised by a quite important relative variation of some parameters (De, Ry, Pc1

for instance) and dry periods (Dq) which could be long enough.

The three remaining subclasses compose the convective class events. They are characterized by a strong temporal

heterogeneity and significant intensities. This convective class is divided according to the rain event depth into:

Subclass 3 contains relatively long events (D.) with high values of the rain event depth (Ry) variable and P.;. This class

25 represents events with a very small occurrence (1.2%).

Subclass 4 contains relatively short events (D.) with rain rate peak that exceeds R,,q > 50 mm.h"! in addition to strong

heterogeneity (og, Pc2and Pcs are high) and large values of the convective indicator (f;3).

Subclass 5, the events of this subclass display relatively low values of the rain event depth (R,) variable. It is due to the short
duration of the events (D). The variables oz and Pc; remain high. Another feature of this subclass is that it is composed

30 entirely of continuous events without embedded small dry periods (low values of D, in Fig.4 and Tab. 5).

Table 5: Summary of rain events subclasses calculated on the training dataset.

35 To conclude this section, this new classification allows refining the traditional stratiform — convective classification in five
homogeneous sub classes but sufficiently heterogeneous between them. The last step of this study will consist to assess if the
homogeneity character of each class is preserved at the microphysics scale and glimpse the possible existence of relationships

between microphysics and macrophysics (hydrological information) scales.

5. Microphysics point of view

40 The study of the microphysical properties of rain is based on the drop size distribution N(D) which is the number of raindrops
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per unit volume and per interval of diameter D. The shape of the drop size distribution N(D) reflects the microphysical
processes involved. The identification of both the drop size distribution features and the precipitation types is useful and
important for numerous applications. For example they are used in the calculation of heating profiles in the precipitation
parameterization for atmospheric models or in the understanding of microphysical processes, as well as in the development of
5 rain retrieval algorithm for remote sensing measurement. Microphysical characteristics act as hidden variable impacting the
relationship between microwave remote sensing measurement of and rain water quantity (Ulaby, 1981; Iguchi, 2009).
Obtaining microphysical characteristics of rainfall events from conventional rain gauges could greatly help to improve active

or passive remote sensing of rain, in particular spatial one.
A general expression of the drop size distribution defined by Testud et al. (2001) is commonly used. It allows distinguishing
10 a stable shape function f and the variability induced by rain. This variability is represented by two microphysics parameters
namely the mean volume diameter (D,,) and the parameter Ng. In some of the references N,, is used instead of Ng but the
various references do not use the exactly the same units, in particular Bringi et al. (2003) and Suh et al. (2016) use mm'm

for N,, units instead of mm™ for N§.
N(D) = Nif () [mr*] ®)
m

15  Their definition is recalled below:

4 5
4% M3

My
I(4) M3

Dy, = [mm], Ng=

- [m?] ©)

Where M; is ith-order moment of the drop size distribution N(D)
M; = [7” N(D)D'dD D

Usually rain samples are analysed by computing the microphysical parameters (D,, and Ng) for each rain samples obtained
20 for a given time scale. In this study the drop size distribution N(D) is obtained by considering the whole raindrop collection
corresponding to each rain event of (variable) duration D,. It thus leads to one couple (D,,, Ny) of microphysics variables per

rain event where other authors rely on values computed over a fixed time scale.

Projections of the trained map according to D,,, and Ny are shown in Fig.4 (bottom right). The first remark is that the two maps
are well structured. We see that the two parameters vary oppositely. Although these parameters were not learned directly we
25 notice that the relationship between the two microphysical parameters is clearly taken into account by the information used to
structure the map (the 5 selected variables). Moreover, the existence of relations between microphysical and macro physical
features is also confirmed in Fig. 4, in which the macro physical variables oy and R, used to learn the SOM, both display

patterns similar to these found on the D,,, map.

Many authors try to associate specific microphysical properties to each precipitation types (convective or stratiform) (among

30 others, Atlas et al., 1999; Bringi et al., 2003; Marzuki et al.,2013; Suh et al. 2016). Considering Fig. 4 and the
convective/stratiform classification of the section 4.3, we can confirm that precipitation events classified as stratiform express
small values for D,, and large values for Nj. For the convective class we notice the opposite (i.e. larger values for D,, and
smaller values for Ng). Similar observations are also reported by Testud et al. (2001). It can also be noticed that the two
microphysics variables are more homogeneous in the convective class while the stratiform class shows larger variability.

35 To better study the microphysical information embedded in our data set we are going to study the relationship between the two
microphysical parameters through the referent vectors (the neurons) of the map, which encompass the information of the

original rain events.
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Figure 9 shows the variable D,, versus Nj for the 64 neurons of the map. To better discuss the microphysics related to the two
rain types (stratiform and convective), the relationship is displayed using distinct markers to identify the five subclasses defined

in section 4.4. The two solid lines show the linear regressions calculated on stratiform and convective classes.

For stratiform subclasses (1 and 2) one can see a clear relationship between the two variables. The microphysics characteristics
5 of these two subclasses are clearly distinct. Indeed, the subclass 1 (drizzle and light rain) has the smallest D,,, and the highest
Ng and have small ranges of variation. On the contrary like for macro physics variables (see section 4.4) the microphysics
characteristics of the subclass 2 (normal events) is much more heterogeneous. The knowledge of D,, allows to easily
discriminate the corresponding subclass. Hence an event with values of D,, in the range [0.5, 1] millimetre belongs to the

subclass 1. In the same way, an event with values of D,, in the range [1, 1.7] millimetre belongs very probably to subclass 2.

10 For convective events (subclasses 3, 4, 5) little differences can be noticed considering Nj. In the range [1.7 , 2.5] mm two
neurons belonging to subclass 4 are close to a neuron belonging to subclass 5 and therefore have similar microphysics. One
can note also the presence of three isolated neurons belonging to subclass 2 (stratiform) even if they are located far from other
neurons of subclass 2. They are characterised by quite strong values of D,, (2 mm) and low values of Nj. We checked that the
corresponding events are a mixture of stratiform and convective rain. A typical case consists of convective rain at the beginning

15 of the event with strong rain rates while the rest of the event is stratiform with low rain rates values and small variations.

Figure 9: Microphysical variable Ny versus D, for the five rainy event subclasses. The three neurons corresponding to mixed events
are circled. Dashed lines correspond to borders D,, > 1.66 and Log(Ny)>6.15

20  According to our classification, Fig.9 allows to conclude that there exist some relationships between macro physical and
microphysical variables. Nevertheless the knowledge of the couple (D,,,, Ny) does not allow determining in some cases the

correct subclass.

The authors who are concerned by the identification of microphysical features with precipitation type use simple schemes
25 based on rain rate estimated for a fixed integration time (a few minutes) to separate stratiform and convective rain type. They
also use these simple schemes to label D,, and Ny as stratiform or convective (Testud et al., 2001). This approach is significantly
different from ours that assumes that all samples of an event belong to the same class. Our Ny and D,, are thus not computed
on a fixed period but rather on the time scale of a given event. Consequently it has to be noticed that the Ng found in this study
do not cover the same range as the ones of the previously cited studies even if there is a good agreement concerning the D,,
30  range.
Many previous authors observed that the drop size distribution is closely linked to processes that control rainfall development
mechanisms. In the case of stratiform rainfall, the residence time of drops is relatively long and raindrops grow by the accretion
mechanism. In convective rainfall raindrops grow by the collision—coalescence mechanism associated with relatively strong
vertical wind speeds. Numerous studies exist concerning the variability of Ng and D,,, Bringi et al. (2003) study rain samples
35 from diverse climates and analyse their variability in stratiform and convective rains while Marzuki et al. (2013) investigate
variability of raindrop size distribution through a network of Parsivel disdrometers in Indonesia and Suh et al. (2016)
investigate raindrop size distribution in Korea using a POSS disdrometer. For stratiform rain they all observe that Ng and D,,
are nearly log-linearly related with negative slope. This is consistent with what can be seen in Fig. 9 for the two stratiform
subclasses (1 and 2). Even the three distinct neurons isolated from the others seem to be ruled by the same relationship.
40 During convective rain, Marzuki et al. (2013) note that the increase of N with decreasing D, is also close to log-linear with
flatter slope. In our case the dependence is also log-linear with a slope slightly flatter for convective events than for stratiform

ones. In the works previously cited the data are aggregated over time by campaign or by site on the basis of criteria computed
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over a fixed time period. We believe that this process is not well appropriate to display the properties of convective events
given their strong variability and their shorter characteristic time. In our study we are able to retrieve the log-linear relationship
between Ng and D,, without directly learning it.
Using our algorithm on various macroscopic properties by rain event we also take into account the variability of rain within a
5 rain event. Fig 9 shows clearly that the spreading of parameters Ng and D,, inside each subclass has the same magnitude than
the distance between subclasses. This remark confirms the hypothesis of Tapiador et al. (2010) : the intra event variability
range can exceed the inter event variability due to events from different precipitation systems. It is thus best to examine more
generally the properties of events instead of studying the distinction between stratiform and convective processes through
individual samples. The three isolated neurons of subclass 2 (circled in Fig. 9) previously mentioned share the properties of
10 the other events of their subclass (i.e. same slope for the log-linear relationship between N and D,,). This example confirms
the ability of the methodology to keep the pertinent macroscopic information to cluster rain events that allows restoring intra
event variability as well as microphysical information.
In their study, Suh et al. (2016) also compare log(Ng) and D,, pdf for stratiform and convective samples over a 4-year period.
Based on the D,, pdf of both stratiform and convective classes they compute a threshold value of D,,. For values of D,, > 1.66
15  mm the rainfall samples are mostly convective. They are mostly stratiform otherwise. This finding is also consistent with the
results of Atlas et al. (1999) who also found a threshold D,, value distinguishing convective and stratiform rainfall. In Fig. 9,
it can be seen that this threshold is confirmed (vertical solid line), D,, smaller than 1.6 mm correspond to stratiform events
while values higher are mostly convective. As we consider events, we also have the three neurons corresponding to a “mixed
event” beyond this threshold.
20  Concerning N Suh et al. (2016) in their Fig. 4c one can observe that the pdf for convective rainfall is higher than that of
stratiform for log(Ng) > 6.2 (N = 3.2 in their figure). As previously told, by considering events, our range of values for N
is smaller from the ones displayed in the other studies. In our study all the neurons labelled as convective have log(Ng) < 6.15
which is quite close from the value 6.2 found in Suh et al. (2016).
Given the overall good retrieval of microphysical information, from macrophysical parameters we can consider that the
25 topological map successfully stored some implicit information embedded in the data set. Since macrophysical parameter values
are ruled by the microphysical properties of rain we can wonder how this is done. First of all, the selection of the map gathers
events similar from each other while making sure, through the minimization of the topological error, that the unfolding of the
map is correct. Hence a neuron is closer to his neighbour than to any other neuron of the map. This criterion insures, as much
as it can be done, a partition of the data space in connected subparts. Hence the neurons of the map could be linked with the

30  underlying processes ruling rainfall.

6. Conclusion

Even if the definition of ‘rain event’ is relatively subjective, this study underlines the benefit of event analysis instead of

samples analysis. This data driven analysis of events shows that rain events exhibit coherent features. In fact, the discrete and
35 intermittent natures of rain processes make the definition of some features inadequate when defined on a fixed duration. A too

long integration times (hour, day) lead to mix observations that correspond to distinct physical processes and also to mix rainy

and clear air periods in the same sample. A too small integration time (seconds, minutes) will lead to noisy data with a great

sensibility to detector characteristics (capture area, detection threshold and noise). The analysis on the whole rain event instead

of individual short duration samples of a fixed duration allows to clarify relations between features, in particular between
40 macro physical and microphysical ones. This approach allows suppressing the intra-event variability partly due to measurement

uncertainties and allows focusing on physical processes.

Once clarified the definition of an event it is to select a small number of relevant variables to describe it. A new data-driven

approach is developed to select the relevant variables. This approach present generic properties and can be adapted to many
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multivariate applications. A genetic algorithm associated to Self-Organizing Map (SOM) clustering allow to select in an
unsupervised way an optimal subset of five macro physical variables in minimizing a score function depending both of the
topology error of the SOM and the number of used variables. This score provides a parsimonious description while preserving

as much as possible the topology of the initial space.

5 In the context of rain time series studies and due to the wide variety of center of interest (hydrology, meteorology, climate,
forecast) numerous variables (based on rain rates records) are used to describe precipitation records. The proposed algorithm
gets a subspace formed by 5 among the 23 features found in the literature. We show that these five features selected (in an
unsupervised way) by the algorithm describe the main characteristics of rainfall events from a macro physic point of view.
These features are: the event duration, the rain rate peak, the rain event depth, the event rain rate standard deviation and the

10 absolute rain rate variation of order 0.5.

To confirm relevance of the five selected features the corresponding SOM is analyzed. This analysis shows clearly the
existence of relationships between features. It also shows the independence of the inter-event time (IET}) feature or the weak
dependence of the Dry percentage in event (Dgse) feature. This confirms that a rain time series can be considered by an
alternation of independent rain event and no rain period. A hierarchical clustering is performed. The well-known division
15 between stratiform and convective events appears clearly. This classification into two classes is then refined in 5 fairly
homogeneous subclasses. The stratiform class was divided into 2 subclasses: a drizzle / very light rain subclass and a normal
events subclass. The convective class was divided into 3 subclasses characterized by a strong temporal heterogeneity and

significant rates.

The data driven analysis performed on whole rain events instead of fixed length samples is relevant to study relations between
20 macrophysics (based on rain rate) and microphysics (based on raindrops) features. Strong relationships between microphysical
and macro physical characteristics were identified. We show that among the 5 identified subclasses some of them have specific

microphysics characteristics.

The relation between microphysical and macro physical characteristics can suggests many implications especially for remote
sensing. In the context of weather radar applications the microphysical rain properties are needed to estimate rain rates through
25 the Z-R relations. The estimation of microphysical characteristics from easily observable by rain gauges features can plays an

important role in development of the quantitative precipitation estimation (QPE).

References
Akrour, N., Chazottes, A., Verrier, S., Mallet, C., and Barthes, L.: Simulation of yearly rainfall time series at microscale
resolution with actual properties: Intermittency, scale invariance, and rainfall distribution. Water Resources Research, 51(9),
30  7417-7435,2015.
Atlas, D., Ulbrich, C.W., Marks, F. D., Amitai, E., and Williams, C. R.: Systematic variation of drop size and radar-rainfall
relations, J. Geophys. Res.-Atmos., 104, 6155-6169, 1999.
Balme, M., Vischel, T., Lebel, T., Peugeot, C., and Galle, S. : Assessing the water balance in the Sahel: impact of small scale
rainfall variability on runoff Part 1: rainfall variability analysis. Journal of Hydrology 331:336-348, 2006.
35 Bringi, V. N., Chandrasekar, V., Hubbert, J., Gorgucci, E., Randeu, W. L., and Schoenhuber, M.: Raindrop size distribution
in different climatic regimes from disdrometer and dual-polarized radar analysis, J. Atmos. Sci., 60, 354-365, 2003.
Brown, B.G., Katz, R. W., and Murphy, A.H.: Statistical analysis of climatological data to characterize erosion potential: 1.
Precipitation Events in Western Oregon. Oregon Agricultural Experiment Station Spec. Rep. No. 689, Oregon State University

(1983).

15



Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-389, 2016 Atmospheric
Manuscript under review for journal Atmos. Meas. Tech. Measurement
Published: 29 November 2016 Techniques
(© Author(s) 2016. CC-BY 3.0 License.

Discussions

Brown, B.G., Katz, R. W., and Murphy, A.H.: Statistical analysis of climatological data to characterize erosion potential: 4.
Freezing events in eastern Oregon/Washington. Oregon Agricultural Experiment Station Spec. Rep. No. 689, Oregon State
University, 1984.
Brown, B.G., Katz, R. W., and Murphy, A.H.: Exploratory Analysis of Precipitation events with Implications for Stochastic
5 Modeling. Journal of Climate and Applied meteorology(57-67), 1985.
Cosgrove, C.M. and Garstang, M.: Simulation of rain events from rain-gauge measurements. International Journal of
Climatology 15, 1021-1029, 1995.
Coutinho, J.V., Almeida, C. Das, N., Leal. A.M. F., Barbarosa, L. R.: Characterization of sub-daily rainfall properties in three
rain gauges located in northeast Brazil. Evolving Water Resources Systems: Understanding, Predicting and Managing Water—
10 Society Interactions Proceedings of ICAR 2014, Bologna, Italy, 345-350, 2014.
Daumas, F. : Méthodes de normalisation de données, Revue de statistique appliquée, 30(4), 23-38, 1982.
Dunkerley, D.: Rain event properties in nature and in rainfall simulation experiments: a comparative review with
recommendations for increasingly systematic study and reporting, Hydrological Processes, 22(22), 4415-4435, 2008a.
Dunkerley, D.: Identifying individual rain events from pluviograph records: a review with analysis of data from an Australian
15 dryland site, Hydrological Processes, 22(26), 5024-5036, 2008.
Eagleson, P. S.: Dynamic Hydrology, McGraw-Hill, 1970.
Galmarini, S., Steyn, D. G., and Ainslie, B.: The scaling law relating world point-precipitation records to duration. Int. J.
Climatol., 24, 533-546, 2004.
Everitt, B.: Cluster Analysis. London: Heinemann Educ. Books, 1974.
20 Delahaye, J.-Y., Barthes, L., Golé, P., Lavergnat J., and Vinson, J.P.: a dual beam spectropluviometer concept, Journal of
Hydrology, 328(1-2), 110-120, 2006.
Gargouri, E., Chebchoub, A.: Modélisation de la structure de dépendance hauteur-durée d’événements pluvieux par la copule
de Gumbel. Hydrological Sciences—Journal-des Sciences Hydrologiques, 53(4), 802-817, 2010.
Grazioli, J., Tuia, D., and Berne, A.: Hydrometeor classification from polarimetric radar measurements: a clustering approach,
25  Atmos. Meas. Tech., 8, 149-170, 2015.
Haile, A. T., Rientjes, T. H. M., Habib, E., Jetten, V., and Gebremichael, M.: Rain event properties at the source of the Blue
Nile River, Hydrol. Earth Syst. Sci., 15, 1023-1034, 2011.
Iguchi, T., Kozu, T., Kwiatkowski, J., Meneghini, R., Awaka, J., and Okamoto, K.: Uncertainties in the rain profiling algorithm
for the TRMM precipitation radar. J. Meteor. Soc. Japan, 87A, 1-30, 2009.
30 Holland, J. H.: Adaptation In Natural And Artificial Systems, University of Michigan Press, 1975.
Kohonen, T.: Self-organizing formation of topologically correct feature maps. Biological Cybernetics, 46, 59-69, 1982.
Kohonen, T.: Self-Organizing Maps, Springer Series in Information Sciences, 2001.
Larsen, M. L. and Teves, J. B.: Identifying Individual Rain Events with a Dense Disdrometer Network, Advances in
Meteorology, 2015, ID582782, 2015.
35 Lavergnat, J. and Golé, P.: A Stochastic Raindrop Time Distribution Model. Journal of Applied Meteorology, 37, 805-818,
1998.
Lavergnat, J. and Golé, P.: A stochastic model of raindrop release: Application to the simulation of point rain observations,
Journal of Hydrology, 328(1), 8-19, 2006.
Llasat, M.C.: An objective classification of rainfall events on the basis of their convective features. Application to rainfall
40 intensity in the north east of Spain. International Journal of climatology, 21, 1385-1400, 2001.
Marzuki, M., Hashiguchi, H., Yamamoto, M. K., Mori, S., and Yamanaka, M. D.: Regional variability of raindrop size
distribution over Indonesia, Ann. Geophys., 31, 1941-1948, 2013.

16



Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-389, 2016 Atmospheric
Manuscript under review for journal Atmos. Meas. Tech. Measurement
Published: 29 November 2016 Techniques

(© Author(s) 2016. CC-BY 3.0 License.

10

15

Discussions

De Montera, L., Barthes, L., and Mallet, C.: The effect of rain-no rain intermittency on the estimation of the Universal
Multifractal model parameters, J. of Hydrometeorology, 10, pp. 493-506, 2009.

Moussa, R. and Bocquillon, C.: Caractérisation fractale d'une série chronologique d'intensité de pluie. Rencontres
hydrologiques Franco-Romaines, 363-370, 1991.

Suh, S.-H., You, C.-H., and Lee, D.-1.: Climatological characteristics of raindrop size distributions in Busan, Republic of
Korea, Hydrol. Earth Syst. Sci., 20, 193-207, 2016.

Tapiador, F. J., Checa, R., and de Castro, M.: An experiment to measure the spatial variability of rain drop size distribution
using sixteen laser disdrometers. Geophysical Research Letters, 37(16), ID L16803, 2010.

Testud, J., S., Oury, P., Amayenc, and Black, R. A.: The concept of ‘‘normalized’’ distributions to describe raindrop spectra:
A tool for cloud physics and cloud remote sensing, J. Appl. Meteor., 40, 1118-1140, 2001.

Ulaby, F. T., Moore, R. K., and Fung, A. K.: Microwave Remote Sensing: Fundamentals and Radiometry. Vol. I. Artech
House, 321-327, 1981.

Verrier, S., Barthes L., Mallet C.: Theoretical and empirical scale dependency of Z-R relationships: Evidence, impacts, and

correction, Journal of Geophysical Research: Atmospheres, 118 (14), 7435-7449, 2013.

17



Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-389, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 29 November 2016

(© Author(s) 2016. CC-BY 3.0 License.

Tables

Atmospheric
Measurement
Techniques

Discussions

Observation period

Availability (%)

Number of rain event

Learning data set

01/01/2013-12/31/2014

96.4%

234

Test data set

04/16/2008-01/31/2012

60%

311

Table 1: Observation periods and availability of DBS observations and number of rain events for learning and test data sets
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Number Feature name symbol Formula Normalisation
#)
1 Event duration D, De = Tena — Tpegin + 1 [min] 1
With Tpegin: Event start time and Tepg4: Event end time
P a3 1 t=Tep, -
2 Mean event rain Ry Ry = D_ezt:Tbe;m RR, [mmh] 2
rate
2 =Ten .
3 Intra-dry Dy Dy = Zizne:i" I, [min] 0
duration . -
With I, = {1 if RRy =0 [mmh™1]
0 else
4 First quartile Q1 The 25th percentile [mm h'] 0
5 Median Q, the 50th percentile [mm h'] 0
6 Third quartile Q3 The 75th percentile [mm h'] 2
7 Previous IET IET, IET, = Thegin(current event) — Tenq(previous event) + 1 None
[min]
i 1 t=Ten .
8 Mean rain rate Ry Ry = mztﬂbegm RR; [mmh'] 3
over the rainy
period
9 Event Rain rate ly 1 wt= 2
" 0 = (&2, (R = Rp)? [ )
std. ¢
10 Mode M, M, =the most frequent RR¢ 0
11 Rain rate peak Rinax Rpmax = max(RR,) 2
12 Dry Percentage Daose Dy 5
) Daye = 7~
in event e
13 Rain event Ry Rq = Ry *D, /60 [mm] 0
depth
14 t=Tenq—1
Absolute rain Per S ) 6
- By= ) IRRuy—RR%
15 rate variation of P, t=Tpmin 3
16 order ¢ Pes For ¢; =0.5,1,2 2
17 Normalized Pe,, P, = P 3
18 Absolute rain P. D, 2
N2
rate variation of Fori=1..3
19 Pe,, 0
order ci
20 Absolute rain Pgc t=Tena=1 6
rate variation of Psc= ) max](RRes; = 5),0] - max{(RR, - 5), 0]|°
t=Thegin
order C and res
Withs =03 and ¢ = 2
threshold S
21 B, parameter Br1 Zfi’,}i " RR; O(RR, — L;) 5
[
Ei:Tiegin RRy
0
iz ForLi=03,1,3mmh™
22
With 8(RR; — L;) is the Heaviside function defined as
23 Bis . 0
O(RR, — L) =1if RR, = L;
O(RR, — L)) = 0if RR, < L;

Table 2: The 23 variables identified in the literature to characterize a rain event
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Transformation
Transformation name Formula f(x) Note & remark
number
L x —mean(x)
0 Standardisation _— -
std(x)
1 Power x" n = 0.05
2 y=-01
@ -1
3 Boxcox D — y=-02
14
4 y=-03
Data are between 0 and
5 Arc-sin of square arcsin/x :
6 decimal Logarithm Log(x + ¢) c=01
Table 3: Transformations used to normalize the variables described in Table 2.
Variables De Rm Da Qi Q2 Qs IET, Rur OR Mo  Rmax Da%e
R? training data 0.96 0.91 058 057 048 077 031 0.93 097 050 096 052
set
R? Test data set 0.93 084 055 057 050 074 026 0.84 0.86 054 0.82 050
Variables Ra Pei P2 Pes Pt Pov2 Pens Ps.c P P2 fus -
R? training data  0.97 097 093 094 091 095 0.78 094 0.70  0.89 0.96
set
R? Test dataset  0.94 099 091 083 0.83 0.85 071 0.82 0.61 0.76  0.89 -

Table 4: Coefficient of determination obtained on the training & test data sets. Values with dark grey background correspond to
the 5 selected variables

Stratiform events Convective events
Subclass 1 Subclass 2 Subclass 3 Subclass 4 Subclass 5
Variables Mean Mean mean mean mean
D, (min) 321 149 464 75 49
oR 0.36 2.01 3.62 11.7 9.64
Ripax(mm h™1) 2.08 10 22 52.7 36.06
Rq(mm) 1.99 2.62 11.24 6.9 272
P 75.7 64.5 193 78.2 40.94
Rp(mmh™1) 0.37 1.48 2.35 7.85 7.11
Dy (min) 80 31 75 11 1
Bz 0.01 0.42 0.48 0.89 0.86

Table 5: Summary of rain events subclasses calculated on the training dataset.
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Figure 1: PCA on the training data set of the 23 variables described in Table 3. Left : Correlation circle on axis 1 & 2. Right :
Correlation circle on axis 1 & 3. All the variables are normalised according to Table 2 last column.
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Entry : Initialization J

chromo 1: (0o T1T0Y0)0] - - - = )RIEICIC]
chomo2: [0Jo[1T1 1 )0] - = - - [1)e)C))C]
'

awomose:[0JoJOT0o)] - - - = [R)REE

60 chromosoms randomly generated

Evaluation
for each chromosom x :
chromo X °|0|°|D|I jje=ee- IlClOIOIX
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s
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5 Figure 2: Diagram for the selection of variables based on a Genetic Algorithm associated with Kohonen Maps
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Castanca Matrix

Distance

Figure 3: Distance matrix of M(x5°t) map: The color of each neuron represents its distance with neighbouring neurons. Values
inside each neuron provide the number of rain events of the training data set captured by the corresponding neuron. The black

5 line separates the neurons in 2 classes using Hierarchical Ascendant Classification (see section 4.1). The arrows represent the
gradients of variables Rmax, o and De
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70 Figure 4: Projection of the M(x5°st) map according to the 23 variables. The red framed variables are those that were selected by
the GA algorithm. The last two variables Dm and Njare defined later in section 5
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Figure 5: B3 variable versus its corresponding value given by the best matching unit: on training data set (circle) and on the test
5 data set (star). The solid line correspond the first diagonal
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Figure 6 Dendrogram obtained from the Hierarchical Cluster Analysis of the 64 neurons of SOM
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5 Figure 7: Representation of the neurons in the subspaces Rm, B 3and Rm, Pc2. Stars represent neurons belonging to group one
(stratiform) and square to neurons of group 2 (convective)
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Figure 8: Hierarchical Clustering of the map in five subclasses. Colours represent the subclass numbers:
Subclass 1 : Dark blue, Subclass 2 : blue, Subclass 3 : Green, Subclass 4 : Orange, Subclass 5 : Red

28



Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-389, 2016 Atmospheric

Manuscript under review for journal Atmos. Meas. Tech. Measurement
Published: 29 November 2016 Techniques
(© Author(s) 2016. CC-BY 3.0 License. Discussions
o 1
1 * subclass 1
D _=1.66 mm : " subclass 2
68 ok ! A subclass 3
1 ¢ subclass 4
! O subclass 5
6.6 [~ :
— 1
5 1
E ol :
R l
Z
~— 62
o)
o)
—
s ]
¢
-0.38D_+6.77
58
° Q
5.6 = | <> o |
0.5 25 3
Dm [mm]

Figure 9: Microphysical variable Ny versus D, for the five rainy event subclasses. The three neurons corresponding to mixed events
5 are circled. Dashed lines correspond to borders D,, > 1.66 and Log(Ny)>6.15
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